DEEn Dictionary De - En
DeEs De - Es
DePt De - Pt
 Vocabulary trainer

Spec. subjects Grammar Abbreviations Random search Preferences
Search in Sprachauswahl
real number
Search for:
Mini search box
 
English Dictionary: real number by the DICT Development Group
2 results for real number
From WordNet (r) 3.0 (2006) [wn]:
real number
n
  1. any rational or irrational number [syn: real number, real]
From The Free On-line Dictionary of Computing (15Feb98) [foldoc]:
   real number
  
      One of the infinitely divisible range of values
      between positive and negative {infinity}, used to represent
      continuous physical quantities such as distance, time and
      temperature.
  
      Between any two real numbers there are infinitely many more
      real numbers.   The {integers} ("counting numbers") are real
      numbers with no fractional part and real numbers ("measuring
      numbers") are {complex numbers} with no imaginary part.   Real
      numbers can be divided into {rational numbers} and {irrational
      numbers}.
  
      Real numbers are usually represented (approximately) by
      computers as {floating point} numbers.
  
      Strictly, real numbers are the {equivalence classes} of the
      {Cauchy sequences} of {rationals} under the {equivalence
      relation} "~", where a ~ b if and only if a-b is {Cauchy} with
      limit 0.
  
      The real numbers are the minimal {topologically closed}
      {field} containing the rational field.
  
      A sequence, r, of rationals (i.e. a function, r, from the
      {natural numbers} to the rationals) is said to be Cauchy
      precisely if, for any tolerance delta there is a size, N,
      beyond which: for any n, m exceeding N,
  
         | r[n] - r[m] | < delta
  
      A Cauchy sequence, r, has limit x precisely if, for any
      tolerance delta there is a size, N, beyond which: for any n
      exceeding N,
  
         | r[n] - x | < delta
  
      (i.e. r would remain Cauchy if any of its elements, no matter
      how late, were replaced by x).
  
      It is possible to perform addition on the reals, because the
      equivalence class of a sum of two sequences can be shown to be
      the equivalence class of the sum of any two sequences
      equivalent to the given originals: ie, a~b and c~d implies
      a+c~b+d; likewise a.c~b.d so we can perform multiplication.
      Indeed, there is a natural {embedding} of the rationals in the
      reals (via, for any rational, the sequence which takes no
      other value than that rational) which suffices, when extended
      via continuity, to import most of the algebraic properties of
      the rationals to the reals.
  
      (1997-03-12)
  
  
No guarantee of accuracy or completeness!
©TU Chemnitz, 2006-2024
Your feedback:
Ad partners